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Abstract — An integral equation method is developed to solve for the

complex propagation constant in multilayer planar structures with an

arbitrary number of strip conductors on different levels. Both dielectric
losses in the substrate layers and conductor losses in the strips and ground

plane are considered. The Green’s function included in the integral equa-

tion is derived by using a generalized impedance boundary formulation.

The microstrip ohmic losses are evafuated by using an equivalent fre-

quency-dependent impedance surface which is derived by solving for the

fields inside the conductors. This impedance surface replaces the conduct-

ing strips and takes into account the thickness and skin effect of the strips

at high frequencies. The effects of various parameters such as frequency,

thickness of the lines, and substrate surface roughness on the complex

propagation constant are investigated. Resnfts are presented for single

strips, coupled lines, and two-level interconnects. Good agreement with

available literature data is shown.

I. INTRODUCTION

sHIELDED microstrip lines are widely used in mi-

crowave integrated circuits, where they perform a great

variety of functions. It is therefore very important to have

an accurate knowledge of their characteristics, i.e., phase

velocity, characteristic impedance, and losses as a function

of geometry and frequency. Because dissipative losses im-

pose a major limitation on the performance of microstrip

interconnects, passive circuits, and radiating elements, it is

of interest to improve loss analysis, whereby effects of

substrate and non–perfectly conducting strips can be

treated individually. Ohmic losses due to the finite conduc-

tivity of the strips constitute the prevalent loss effect at

microwave and millimeter-wave frequencies. These have

been studied by several authors during the past 50 years

but consideration has been limited to lower frequencies

and electrically thick strips.

The incremental inductance rule derived by Wheeler [1] is

the foundation for calculating the surface resistivity of
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conductive strips. From the knowledge of the resistivity,

attenuation due to conductor losses has been evaluated by

analytic [2], [3] and numerical [4] differentiation. The per-

turbation method is also frequently used in quasi-static

techniques such as the boundary-element method [5] and

the finite-element method [6], as well as in spectral-domain

full-wave analyses [7], [8].

These techniques are strictly limited to electrically thick

conducting strips; i.e., they assume that the conductors

have a thickness much greater than the skin depth at the

frequency of interest. The thickness is usually taken into

account by a modification of the strip width [4], [9].

However in monolithic microwave and millimeter-wave

integrated circuits, where the metallization thickness is of

the order of a few pm, the skin effect becomes an impor-

tant issue. In the past few years, several researchers have

studied the above problem using variational formulations

[10], [11].

This paper represents an approach which evaluates losses

in interconnects printed on multilayer substrates and sur-

rounded by a shielding cavity. The electromagnetic fields

are expressed by an integral equation which is solved

independently inside the conducting strips and in the

surrounding region. The solution for the fields inside the

conductors provides the surrounding region with a relation

between tangential electric and magnetic fields on the

surface of the strips which serves as an additional bound-

ary condition. This boundary condition is satisfied by an

equivalent infinitesimally thin impedance surface which

then replaces the lossy conducting strips. The fields in the

dielectric region, which consists of an arbitrary number of

layers, are computed by a method of moments solution of

Pocklington’s integral equation subject to the newly intro-

duced boundary condition. The present technique is ap-

plied to several structures, and a number of parameters are

investigated.

H. THEORY

Consider an infinitely long, inhomogeneously filled

waveguide with several microstrip lines on different levels

in the multilayer configuration shown in Fig. 1. The con-

ductor strips are assumed to have finite conductivity u and
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thickness t.The conductor thickness is usually small com-

pared to the strip dimensions; however, this need not be

the case, especially in monolithic microwave and millime-

ter-wave ‘integrated circuits on GaAs. Also, in practical

circuits the strips are usually at least two widths away from

the sidewalls of the waveguide to avoid coupling; therefore

losses due to the finite conductivity of these walls are

neglected in this derivation. However, the effect of a lossy

ground plane is analyzed. Both conducting and dielectric

regions are assumed to be nonmagnetic, with free-space

permeability PO. Dielectric losses are accounted for by

assuming a complex permittivity for each layer, which in

turn implies that the propagation constant y = jkz is a

complex quantity. In the two-dimensional problem, each

microstrip mode propagates rectilinearly along the z direc-

tion with a dependence of the form e~t@f-@J.

The integral equation formulation presented in this sec-

tion is twofold. First, in the dielectric region, the problem

is solved by a rigorous hybrid-mode solution where an

integral eigenvalue equation is set up. The Green’s func-

tion is derived by using an equivalent transmission line for

the representation of the fields along the direction normal

to the dielectric interfaces. This formulation allows for

multiple conductors on different planar levels.

Next, the field behavior inside the conductor is de-

scribed by a quasi-TEM analysis where the magnetic vec-

tor potential is related to the unknown current distribution

by a static Green’s function. This method allows for the

computation of the per-unit-length resistance R(j) and

the per-unit-length internal inductance of the strip Li~(~)

as function of frequency. An equivalent surface impedance

is then defined which describes, in a physically equivalent

sense, the frequency-dependent field penetration in the

lossy strips.

The novelty of this method resides in the application of

the boundary condition cm the strip where the tangential

electric field is related to the finite current on the strip by

the surface impedance described above. The resulting gen-

eral integral equation that accounts for both dielectric and

conductor losses is solved numerically by the method of

moments.

A. Integral Equation Formulation in the Dielectric Region

The electric field excited by an electric current source

depends upon the surface current density J as follows:

E(r) = //~(r/r’)~J(r’)ds’ (1)
—

where ~ represents the dyadic Green’s function in the

dielectric regions. The Green’s function is derived by eval-

uating the electric field due to a two-dimensional infinitesi-

mal current source J(r’) = (~ + 2?)8(? – r’), where r’ is

the position vector of the source. Because of the existence

of air and dielectric interfaces, shielded microstrip lines

propagate hybrid modes. Determination of these hybrid

fields is facilitated by the use of magnetic and electric

vector potentials having components in the direction per-

X

1965

,Y

Fig. 1. General shielded microstrip configuration.
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Fig. 2. Multiple layered structure. (a) Generic cross section of a singje
shielded line. (b) Equivalent geometry containing impedance boundaries.

pendicular to the interfaces, i.e., the x direction [12], [13].

For the case of two-dimensi,onal interconnects, the prob-

lem is uniform in the z clirection and the Green’s function

can therefore be solved in the transformed k. space, Thle

spectral dyadic Green’s function G is obtained by solving

the boundary-value problem of the structure under study

[14].

In the present derivation, for the sake of clarity, th~e

simple geometry illustrated in Fig. 2 is studied. However,

the Green’s function is formulated in a generalized way,

which can be applied to more complicated problems. The

equivalent structure cent aining impedance boundaries is

shown in Fig. 2(b), where the current is displaced from the
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interface to generalize the problem and to ease the applica-

tion of the boundary conditions. The impedance bound-

aries ontheupper andlower interfaces are determinedly

the use of a single transmission line problem. This formal-

ism has been applied extensively in the past to open

structures [15]. The boundary conditions at the upper

(i= 1) and lower (i = 2) interfaces can be solved separately

for LSE (subscript a) and LSM (subscript ~) modes. The

impedance q~,f is equivalent to the impedance of a trans-

mission line terminated by a load impedance Z# with

characteristic impedance 2$;s. The load impedance Z:;f
may be a lumped impedance, such as the surface resistance

of the ground plane, as suggested in Fig. 2(b), or it may be

the impedance presented by another substrate layer. The

characteristic impedance Z$f is given by the appropriate

TM and TE wave impedances.

Inside the equivalent structure, the homogeneous scalar

wave equations for Ax and Fx have to be solved in regions

(1) (x> x’) and (2) (x< x’). Applying the method of

separation of variables, the following boundary conditions

need to be satisfied: (i) vanishing electric fields on the

sidewalls, (ii) impedance boundaries on the upper and

lower walls as

(2)

\ ‘X2/ a,f

(iii) continuity of the electric fields at x = x‘, and (iv)

discontinuity of the magnetic field components due to the

infinitesimal two-dimensional current source at x = x‘:

fix(@) _~(2)
) = (j+~)a(y- y’)e’kzz’]x=x. (3)

Because the current sources are assumed to have both

longitudinal and transverse components, four out of six

components of the dyadic Green’s function are needed.

A more general current distribution J maybe written in

the form

-J(r’)= 8(x-x’ )j(y ’)e-~k~sz’ (4)

where k‘s is the unknown propagation constant of the

microsttizp. In view of (4), the integral equation for the

electric field (1) can be expressed as

E(r) = JJ~(x, y/x’, y’)e-jk.(’-z’). j(y ’)e-Jk~sz’dy’dz’
s

(5)

where S is the surface of the strip conductors. In the

above, the z dependence of both the Green’s function and

the current is shown explicitly.

Introducing the spectral form of the Green’s function g,

and using the sifting property of the Fourier transform, the

electric field can be evaluated at any transverse c

section as

JE= ~(x, y/~ ’,y ’).j(y ’)dy ’l~=akMs
c“

where CW is a path along the width of the conductor

“0ss

(6)

14].

Current Distribution (f= 1 GHz)
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Fig. 3. Magnitude of current density inside a rectangular strip at a
height of 3 roils above a perfectly conducting ground (W= 3 roils,
~ = 4 ~ 107 S/m, ~ = 1 GHz, t= 0.2mik.).

The above expression satisfies all boundary conditions

except the ones on the surface of the strip conductors. For

perfectly conducting strips we enforce the Dirichlet condi-

tion of vanishing tangential electric field on the surface of

the line. This boundary condition is applied to (6), which

will be satisfied for discrete values of k=Ms corresponding

to the dominant mode and possibly to higher order modes

propagating in the structure. For the general case of strips

with finite thickness and finite conductivity, this condition

is no longer applicable. Indeed, due to the finite conductiv-

ity, the fields penetrate inside the strips. An exact analysis

of this case requires Maxwell’s equations to be solved

throughout the entire domain, i.e., in the dielectric regions

and inside the lossy strips. Such an analysis is very in-

volved and will not be undertaken here. Instead, we shall

follow an alternative, approximate method based on an

equivalent representation of the lossy strips by impedance

surfaces. These equivalent surfaces are characterized by

frequency-dependent surface impedances which are de-

rived from a quasi-TEM analysis of the field penetration

and the resulting current distributions inside the lossy

strips. The derivation of these impedances is discussed

next.

B. Derivation of the Equivalent Surface Impedance

Under the assumption that the transverse component of

the current is negligible compared to the longitudinal

component, this method is valid through the millimeter-

wave frequency range. In this study the current density in

the lossy strips of Fig. 1 has the longitudinal component

only. An integral equation formulation for the frequency-

dependent current distributions in the lossy strips is then

possible. The derivation of the pertinent integral equation

along with its numerical solution has been presented in

[16] and [17] and will not be repeated here. Fig. 3 illus-

trates the results of this formulation by showing the mag-

nitude of the current density along the width of the strip,
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plotted for four different distances Sl, S2, S3, and SA from

the bottom side of the strip.

Once the current distributions have been computed, the

per-unit-length resistance R(j) and inductance L(j) of

the lossy strips can be found from energy considerations as

described in [17]. The per-unit-length internal inductance

of the strip is then computed as

Lin(f)=L(f)-L@ (7)

where L~ is the per-unit-length inductance of the strip in

the limit u ~ m, in which case the current flows on the

surface of the strip and there is no field penetration.

Knowledge of the per-unit-length strip resistance and in-

ternal inductance allows us to express the per-unit-length

voltage drop AV along the lossy strip as

–AV= [R(f) +j27rfLti(f)]I (V/m) (8)

where 1 is the total current flowing in the strip.

In order to derive the desirable surface impedance, we

start with the standard definition for the surface impedance

of an imperfect conductor as the ratio of the tangential

component of the electric field to the surface current

density at the conductor surface:

E=(7) =Z(T)JZ$(7) =Z(7)HY(’T) (9)

where ~ is the transverse coordinate along the surface of

the conductor. Integrating (9) along the side of the strip,

we have

jw~z(~)~~=fwz(~)~y(~)~~ (10)
o 0

where W is the width of the strip. From (10) using the

mean value theorem for Riemann integration [18] we can

write

jwEz(T) dT=z(70)JwHy(T)d7 (11)
o 0

where To E [0, W]. Dividing both sides of (11) by W and

recognizing the integral on the right-hand side as the total

current flowing on the surface, we can write

EZ=Z(TO); (12)

where ~= is the average value of the longitudinal compo-

nent of the electric field on the strip. Obviously, this value

can be thought of as the negative of the per-unit-length

average voltage drop along the strip, in which case (8) and

(12) lead to the relation

Z(~O)=WIR(f)+ jtiLin(f)]. (13)

This is the desirable expression for the surface impedance

of the equivalent impedance surface to be used in place of
the lossy strip. In what follows, we shall denote this

surface impedance as ZI ( f ) where the subscript 1 suggests

its relation to the longitudinal current on the strip. A

transverse component of the current also exists, and a

transverse surface impedance Zf can be defined as dis-

cussed in the following section.

1967

C. Application of Boundary Condition

The electric and magnetic fields tangential to the surjface

of the strips are related through the surface impedamce

derived in

For most

the previous section as

E,
— = z,(f).
HY

(14)

practical purposes, the dominant part of the

conductor ioss is due-to ~he longitudinal comp&ent of the

current, for which the accurate longitudinal surface

impedance 21( f) has been proposed. However, as the

frequency of interest becomes higher and/or the width of

the strip increases, the transverse component of the current

becomes more significant and needs to be accounted for.

This is being done using the standard surface impedance

for an infinite resistive plane as

(15)

where a is the conductivity of the strip and 8 the skin

depth at the frequency of interest. Even if the width of the

strip is finite, use of (15) is justified by the fact that the

strip is assumed to be infinite in the direction perpendicu-

lar to the flow of the transverse component of the current.

In view of (14) and (15), equation (6) takes the form

/

—

E= ~(x, y/x’, y’).j(y ’)d}’+~. (Hx i’?)l~z=k~S

G

(16)
.

where ~, a dyadic quantity that we call the dyadic sur$ace

impedance, is given by
—
z= Ztjj + 2[.2:. (“17)

Recognizing the boundary condition for the magnetic field

as

fix~=J (:18)

(16) becomes

~g= (~,y\~’,y’)~(y’)dy’- ~~(y’)l~,=~yS=O
w

(119)

The method of moments is adopted here to solve for the

current distribution. The two-dimensional surface current

may be written as

~(Y’) =J,(Y’)~+ ~=(Y’)~ (2!0)

where jY( y‘ ) and jz( y‘ ) are unlcnown functions of ,y’.

Entire domain basis functions are chosen to approximate

the behavior of the current distribution. The longitudinal

current is represented by Chebyshev polynomials of the
first kind ~., and the transverse current is approximated by

Chebyshev polynomials of the second kind ~. These basis

functions are multiplied by their respective weighting func-

tions in order to satisfy the edge conditions
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(21)

P-1
,(

Tq ;(y’–yo)

~.(Y’)= z ~zq
)

\“
(22)/9

~=()

H1– ;(y ’–yo)’
J

In the above expressions W is the width of the strip and

y. is the distance from the origin to the center of the strip.

Introducing these expressions for the basis functions, (19)

results in closed-form integrals that simplify to Bessel

functions of integer order.

The testing functions are chosen as Chebyshev polyno-

mials of the form

(2 -4W;(Y) =Up W(Y

‘J(Y)=T,(+4
(23)

(24)

This method is a variation of Galerkin’s procedure. The

integrals resulting from the weighted averages are ex-

pressed in terms of spherical Bessel functions. This tech-

nique results in a homogeneous system of simultaneous

algebraic equations which can be solved by setting the

determinant of the impedance matrix [%] equal to zero.

Expressions for the elements of [%] are given in the

Appendix. The roots of the determinant correspond to the

propagation constants of the excited modes.

III. NUMERICAL RESULTS

Based on the theory presented in the previous section,

the complex propagation constant in high-frequency inter-

connects is evaluated as a function of various parameters

by using Muller’s algorithm with deflation. Each element

of this matrix involves a summation over the modes of the

inhomogeneously filled waveguide along the y direction.

The number of modes considered is enough to ensure

convergence.

As it has been discussed by many authors, isolated

microstrip interconnects can propagate a dominant mode

with zero cutoff frequency and higher order modes which

are in one-to-one correspondence with the modes of the

inhomogeneously filled waveguide surrounding them. All

these modes are hybrid in nature and exhibit strong depen-

dence on the electrical and geometrical characteristics of

the microstrip interconnects and the shielding structure.

From the parameters which affect the characteristics of the

propagating modes, the strip width W to substrate thick-

ness ratio (aspect ratio) and the operating frequency are

the most important ones. This paper gives an extensive

parametric study of the attenuation of the dominant mode

and the derived results are compared with available data

whenever possible.

In Fig. 4, conductor and dielectric losses calculated with

4.0- A

3.8 , , I
o 1 2 3 4 5

Wld

(a)

wld
(b)

Fig. 4. Conductor and dielectric losses of a single strip versus strip
width (a =10 mm, b=20 mm, d= 1mm, t,=lO, 8= 3.33x107 S/m,
tan8 = 2 X 10-4, ~ = 1 GHz, t = 0.01 mm). (a) Dielectric attenuation
as a function of w/d. (b) Ohmic attenuation as a function of w/d.

the present technique are shown as a function of the aspect
ratio. For thick strips, results derived in this paper are

compared with the finite element method (FEM) [6], the

spectral-domain method (SDM) [7], [19] and an analytic

differentiation of Wheeler’s incremental inductance rule

[2].1 All the existing full-wave analysis models evaluate

conductor losses by using a perturbation method where the

surface resistivity is given by the incremental inductance

rule and, as a result, cannot predict losses for conducting

strips with thickness of the order of a skin depth. The

effect of the conductor strip thickness on conductor losses
is explicitly shown on Fig. 5. On the figure, conductor

losses versus aspect ratio are plotted for the case oft = 0.58,

which appear substantially different from the case of t= 2,

3, and 48 (electrically thick strips). Our results correctly

predict that as the thickness of the strip increases to values

large compared to the skin depth, the loss decreases signif-

icantly to the thick strip limit. This, of course, is due to the

fact that the current is forced to flow through a smaller

area.

lThis analytic differentiation is implemented through the microwave
CAD software package LineCalc, available from EESOF.
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Fig. 5. Effect of thickness on the ohmic attenuation constant (a= 10
mm, b =20 mm, d = 1mm, c,= 10, u = 3.33X 107 S/m, ~ =1 GHz),

o 5 10 15 20

Frequency (GHz)

(a)

$0.6 m
~

d
0.4 “

.-
I.
G

0.2 ~
.-
a

0.0

(b)

Fig. 6. Effect of frequency on the attenuation constant (a= b = 500
pm, kV=d=50pm, c, =10, u = 3.33X 107 S/m, t = 5 pm). (a) Dielec-
tric and conductor losses versus frequency. (b) Equivalent surface
resistivity R, and ground resistivity R, versus frequency.
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Fig. 7. Effect of ground plane resistivi~~ on the ohmic attenuation
constant (a=10 mm, b=20 mm, d=] mm, 6,=10, U =3.33X107
S/m, ~ =1 GHz).
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“ 2L1---l--l-l--+l
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Fig. 8. Effect of roughness on the ohmic attenuation constant as a
function of frequency (a== 10 mm, b== 20 mm, W= d = 280 pm,
‘f=70#m, r=l.5pm, c,=1O, U=4X107 S/m, t=6pm).

The skin-effect problem may also be described as a

function of frequency. The attenuation constant a is plot-

ted in Fig. 6 for frequencies up to 20 GHz. Also shown are

the equivalent surface resistance of the strip (eq. (13)) and

the surface resistivit y R, of the infinite thick plane repre-

senting the ground plane resistance. By using R. as the

surface resistivity of the ground p] ane, results have been

derived which show the effect of the lossy ground on

conductor losses (see Fig. 7). This effect is very important

and therefore losses due to ground plane cannot be ne-

glected.

The present method also allows to account accurately

for multiple metallizations and roughness of the surface of

the strip conductors. In Fig. 8, the effect of a periodic

variation of the surface roughness on conductor losses is
plotted as a function of frequency.

The technique presented in this paper has also been

applied to evaluate conductor and dielectric losses for thle

even and odd excitation modes in the case of two edge-

coupled electrically thick strips. The derived results are

plotted in Fig. 9 as a function of the separation between
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Fig. 9. Conductor and dielectric losses of coupled strips versus line
separation (a =10 mm, b = 20 mm, W/d =1, c, =10, u = 3.33 X107

S\m, tan8 = 2 X 10-4, ~ =1 GHz, t = 0.01 mm). (a) Dielectric attenu-
ation as a function of s/d. (b) Ohmic attenuation as a function of s/d.

the two strips and are compared to results derived with the

spectral-domain method [7], [19]. The agreement is very

good. Similar results are presented in Fig. 10 for the case

of two-level interconnects as a function of frequency.

IV. SUMMARY

An integral equation method has been applied to calcu-

late the propagation constant in shielded multilayer struc-

tures involving an arbitrary number of non–perfectly con-

ducting strips by using the combination of a static Green’s
function inside the strips and a hybrid Green’s function

formulation in the dielectrics. This method allows for the

evaluation of dielectric losses in the substrate layers and

conductor losses in strips of arbitrary thickness. The skin-

:’effect problem is addressed and results show an increase in

the attenuation constant for thin strips. As expected, finite

conductive ground plane and roughness of the strip in-

crease the attenuation constant substantially. Several inter-

connect structures are analyzed, such as single lines and

edge-coupled and broadside-coupled strips, and they com-

pare well with available data.

“ o-
12

F;equen~y (G;z)

Fig. 10. Ohmic losses of two-layer interconnects versus frequency (a = 1

mm, b = 2 mm, dl = 0.2 mm, dz = 0.1 mm, q = 0.5 mm, C,l =4,
(,2 =1, 0=3.33 X107 S\m, t=4 pm).

APPENDIX

EXPRESSIONS FOR THE ELEMENTS OF THE IMPEDANCE

MATRIX %

(Al)

{

1 (@’)’+3z((Zy)’’;woz- -~ ,
m Y

. Jz(3)y(v – Z/&-;-)
qP

where

kr = am

(A2)

)]
,a i
m

(A3)

%)’
“1

(A4)

(A5)

and

(9;;/)’

Coskxr(x–h) tankxr(x-h)+jia;f

Cos k,r(. x’– h) 1– jr)~,ftankXrx’
=—

tankr,(x’– lz)+jf.,f –l–jrfa,ftankxr(x’ – h)
—

tan k., x’ + jq~,f 1 – jq~ ,f tan kX,x’

(A8)

(A6)

(A7)
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COS kX,X tankXrx + j& ,f

coskX,x’ 1– jia,f tank.r(x’ – ~)
(T:f)’z

tankXrx’ + jq~,f 1– jq~, ftankX,x’
—

tankx, (x’ – h)+ ji.,~ l–j~a,ftan k,r(x’ -~)

(A9)

In (A5), c: is the complex permittivity of the substrate,

and i ( =1, 2) represents the regions above and below the

point source, respectively.

Further definitions necessary for the interpretation of

(A1)-(A4) are provided as

I
w: form=n=O

JZ(5) = w: form=n+O (A12)
:

(0 form+n

and

[

T

x(6) = w~ form=n
(A13)

\o form#n.

No general recurrence formulas were found for J(3)

and Y(4). However, these integrals can be written in a

simple form as a weighted sum of spherical Bessel func-

tions.

In equations (A8) and (A9), ~~ and v; are given by

* Z~i + jZ~i tan kx,hi
~:. ~ qi

Z;i + jZ~i tankxih i
(A14)

Xr

k Z~i + jZ~i tan kxih i
~>= -z ‘zf

“ f tan kx,hi‘z Z{i + J&i

(A15)
@Po

where

[1]

[2]

[3]

[4]

[51

(dpoz~i=~
xl

kxi
.qi . —

Ucz+ “

(A16)

(A17)
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