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An Integral Equation Method for the Evaluation
of Conductor and Dielectric Losses
in High-Frequency Interconnects
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Abstract — An integral equation method is developed to solve for the
complex propagation constant in multilayer planar structures with an
arbitrary number of strip conductors on different levels. Both dielectric
losses in the substrate layers and conductor losses in the strips and ground
plane are considered. The Green’s function included in the integral equa-
tion is derived by using a generalized impedance boundary formulation.
The microstrip ohmic losses are evaluated by using an equivalent fre-
quency-dependent impedance surface which is derived by solving for the
fields inside the conductors. This impedance surface replaces the conduct-
ing strips and takes into account the thickness and skin effect of the strips
at high frequencies. The effects of various parameters such as frequency,
thickness of the lines, and substrate surface roughness on the complex
propagation constant are investigated. Results are presented for single
strips, coupled lines, and two-level interconnects. Good agreement with
available literature data is shown.

I. INTRODUCTION

HIELDED microstrip lines are widely used in mi-
crowave integrated circuits, where they perform a great
variety of functions. It is therefore very important to have
an accurate knowledge of their characteristics, i.e., phase
velocity, characteristic impedance, and losses as a function
of geometry and frequency. Because dissipative losses im-
pose a major limitation on the performance of microstrip
interconnects, passive circuits, and radiating elements, it is
of interest to improve loss analysis, whereby effects of
substrate and non-perfectly conducting strips can be
treated individually. Ohmic losses due to the finite conduc-
tivity of the strips constitute the prevalent loss effect at
microwave and millimeter-wave frequencies. These have
been studied by several authors during the past 50 years
but consideration has been limited to lower frequencies
and electrically thick strips.
The incremental inductance rule derived by Wheeler [1] is
the foundation for calculating the surface resistivity of
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conductive strips. From the knowledge of the resistivity,
attenuation due to conductor losses has been evaluated by
analytic [2], [3] and numerical [4] differentiation. The per-
turbation method is also frequently used in quasi-static
techniques such as the boundary-element method [5] and
the finite-element method [6], as well as in spectral-domain
full-wave analyses [7], [8].

These techniques are strictly limited to electrically thick
conducting strips; i.e., they assume that the conductors
have a thickness much greater than the skin depth at the
frequency of interest. The thickness is usually taken into
account by a modification of the strip width [4], [9].
However in monolithic microwave and millimeter-wave
integrated circuits, where the metallization thickness is of
the order of a few um, the skin effect becomes an impor-
tant issue. In the past few years, several researchers have
studied the above problem using variational formulations
[10], [11].

This paper represents an approach which evaluates losses
in interconnects printed on multilayer substrates and sur-
rounded by a shielding cavity. The electromagnetic fields
are expressed by an integral equation which is solved
independently inside the conducting strips and in the
surrounding region. The solution for the fields inside the
conductors provides the surrounding region with a relation
between tangential electric and magnetic fields on the
surface of the strips which serves as an additional bound-
ary condition. This boundary condition is satisfied by an
equivalent infinitesimally thin impedance surface which
then replaces the lossy conducting strips. The fields in the
dielectric region, which consists of an arbitrary number of
layers, are computed by a method of moments solution of
Pocklington’s integral equation subject to the newly intro-
duced boundary condition. The present technique is ap-
plied to several structures, and a number of parameters are
investigated.

II. THEORY

Consider an infinitely long, inhomogeneously filled
waveguide with several microstrip lines on different levels
in the multilayer configuration shown in Fig. 1. The con-
ductor strips are assumed to have finite conductivity ¢ and
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thickness 7. The conductor thickness is usually small com-
pared to the strip dimensions; however, this need not be
the case, especially in monolithic microwave and millime-
ter-wave integrated circuits on GaAs. Also, in practical
circuits the strips are usually at least two widths away from
the sidewalls of the waveguide to avoid coupling; therefore
losses due to the finite conductivity of these walls are
neglected in this derivation. However, the effect of a lossy
ground plane is analyzed. Both conducting and dielectric
regions are assumed to be nonmagnetic, with free-space
permeability p,. Dielectric losses are accounted for by
assuming a complex permittivity for each layer, which in
turn implies that the propagation constant y=jk, is a
complex quantity. In the two-dimensional problem, each
microstrip mode propagates rectilinearly along the z direc-
tion with a dependence of the form e/(“'~k:2),

The integral equation formulation presented in this sec-
tion is twofold. First, in the dielectric region, the problem
is solved by a rigorous hybrid-mode solution where an
integral eigenvalue equation is set up. The Green’s func-
tion is derived by using an equivalent transmission line for
the representation of the fields along the direction normal
to the dielectric interfaces. This formulation allows for
multiple conductors on different planar levels.

Next, the field ‘behavior inside the conductor is de-
scribed by a quasi~TEM analysis where the magnetic vec-
tor potential is related to the unknown current distribution
by a static Green’s function. This method allows for the
computation of the per-unit-lenigth resistance R(f) and
the per-unit-length internal inductance of the strip L;,(f)
as function of frequency. An equivalent surface impedance
is then defined which describes, in a physically equivalent
sense, the frequency-dependent field penetration in the
lossy strips.

The novelty of this method resides in the application of
the boundary condition on the strip where the tangential
electric field is related to the finite current on the strip by

the surface impedance described above. The resulting gen-

eral integral equation that accounts for both dielectric and
conductor losses is solved numerically by the method of
moments.

A. Integral Equation Formulation in the Dielectric Region .

The electric field excited by an electric current source
depends upon the surface current density J as follows:

E(r) = ff(:;(r/r’)ll(r’)ds’ 1)

where G represents the dyadic Green’s function in the
dielectric regions. The Green’s function is derived by eval-
uating the electric field due to a two-dimensional infinitesi-
mal current source J(r’)=(y + £)6(r—r’), where r’ is
the position vector of the source. Because of the existence
of air and dielectric interfaces, shielded microstrip lines
propagate hybrid modes. Determination of these hybrid
fields is facilitated by the use of magnetic and electric
vector potentials having components in the direction per-

Fig. 1. General shielded microstrip configuration.

®

Fig. 2. Multiple layered structure. (a) Generic cross section of a single
shielded line. (b) Equivalent geometry containing impedance boundaries.

pendicular to the interfaces, i.e., the x direction [12], [13].

For the case of two-dimensional interconnects, the prob-
lem is uniform in the z direction and the Green’s function
can therefore be solved in the transformed k, space. The
spectral dyadic Green’s function G is obtained by solving
the boundary-value problem of the structure under study
[14].

In the present derivation, for the sake of clarity, the
simple geometry illustrated in Fig. 2 is studied. However, .
the Green’s function is formulated in a generalized way,

. which can be applied to more complicated problems. The

equivalent structure containing impedance boundaries is
shown in Fig. 2(b), where the current is displaced from the
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interface to generalize the problem and to ease the applica-
tion of the boundary conditions. The impedance bound-
aries on the upper and lower interfaces are determined by
the use of a single transmission line problem. This formal-
ism has been applied extensively in the past to open
structures [15]. The boundary conditions at the upper
(i =1) and lower (i = 2) interfaces can be solved separately
for LSE (subscript @) and LSM (subscript f) modes. The
impedance 7, ; is equivalent to the impedance of a trans-
mission line terminated by a load impedance Z{/ with
characteristic impedance Zg&’. The load impedance Z;
may be a lumped impedance, such as the surface resistance
of the ground plane, as suggested in Fig. 2(b), or it may be
the impedance presented by another substrate layer. The
characteristic impedance Z&/ is given by the appropriate
TM and TE wave impedances.

Inside the equivalent structure, the homogeneous scalar
wave equations for 4, and F, have to be solved in regions
(1) (x>x’) and (2) (x <x’). Applying the method of
separation of variables, the following boundary conditions
need to be satisfied: (i) vanishing electric fields on the
sidewalls, (ii)) impedance boundaries on the upper and
lower walls as

= "72,f (2)

H, a.f

z

(iii) continuity of the electric fields at x =x’, and (iv)
discontinuity of the magnetic field components due to the
infinitesimal two-dimensional current source at x = x’:

AX(HO ~H®) = (5+2)8(y — y)er|,_.. (3)

Because the current sources are assumed to have both
longitudinal and transverse components, four out of six
components of the dyadic Green’s function are needed.

A more general current distribution J may be written in
the form

() =8(x—x)j(y") e (@
where kM5 is the unknown propagation constant of the
microstrip. In view of (4), the integral equation for the
electric field (1) can be expressed as

E(r)= [[&(x,y/x", y")e =0 j(p7) e % Gy o
S
(5)

where § is the surface of the strip conductors. In the
above, the z dependence of both the Green’s function and
the current is shown explicitly.

Introducing the spectral form of the Green’s function g,
and using the sifting property of the Fourier transform, the
electric field can be evaluated at any transverse cross
section as

E=fc§(x,y/x’,y’)~j(y’)dy'lkz=k_»«s (6)

where C,, is a path along the width of the conductor [14].
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Current Distribution (f=1 GHz)

Norm. Current Density

position along strip (microns)

Fig. 3. Magnitude of current density inside a rectangular strip at a
height of 3 mils above a perfectly conducting ground (W =3 mils,
6=4x107 S/m, f =1 GHz, t = 0.2 mils).

The above expression satisfies all boundary conditions
except the ones on the surface of the strip conductors. For
perfectly conducting strips we enforce the Dirichlet condi-
tion of vanishing tangential electric field on the surface of
the line. This boundary condition is applied to (6), which
will be satisfied for discrete values of kM5 corresponding
to the dominant mode and possibly to higher order modes
propagating in the structure. For the general case of strips
with finite thickness and finite conductivity, this condition
is no longer applicable. Indeed, due to the finite conductiv-
ity, the fields penetrate inside the strips. An exact analysis
of this case requires Maxwell’s equations to be solved
throughout the entire domain, i.e., in the dielectric regions
and inside the lossy strips. Such an analysis is very in-
volved and will not be undertaken here. Instead, we shall
follow an alternative, approximate method based on an
equivalent representation of the lossy strips by impedance
surfaces. These equivalent surfaces are characterized by
frequency-dependent surface impedances which are de-
rived from a quasi-TEM analysis of the field penetration
and the resulting current distributions inside the lossy
strips. The derivation of these impedances is discussed
next.

B. Derivation of the Equivalent Surface Impedance

Under the assumption that the transverse component of
the current is negligible compared to the longitudinal
component, this method is valid through the millimeter-
wave frequency range. In this study the current density in
the lossy strips of Fig. 1 has the longitudinal component
only. An integral equation formulation for the frequency-
dependent current distributions in the lossy strips is then
possible. The derivation of the pertinent integral equation
along with its numerical solution has been presented in
[16] and [17] and will not be repeated here. Fig. 3 illus-
trates the results of this formulation by showing the mag-
nitude of the current density along the width of the strip,
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plotted for four different distances s;, s,, $;, and s, from
the bottom side of the strip.

Once the current distributions have been computed, the
per-unit-length resistance R(f) and inductance L(f) of
the lossy strips can be found from energy considerations as
described in [17]. The per-unit-length internal inductance
of the strip is then computed as

L.(f)=L(f)-L, (7)

where L is the per-unit-length inductance of the strip in
the limit o — oo, in which case the current flows on the
surface of the strip and there is no field penetration.
Knowledge of the per-unit-length strip resistance and in-
ternal inductance allows us to express the per-unit-length
voltage drop AV along the lossy strip as

— AV =[R(f)+ j27fLin(f)]T (V/m)

where I is the total current flowing in the strip.

In order to derive the desirable surface impedance, we
start with the standard definition for the surface impedance
of an imperfect conductor as the ratio of the tangential
component of the electric field to the surface current
density at the conductor surface:

E,(1)=Z(7)J (1) =Z(7)H,(7) ©)

where 7 is the transverse coordinate along the surface of
the conductor. Integrating (9) along the side of the strip,
we have

®)

jOWEZ(T)dmeWz(T)Hy(T)dT

where W is the width of the strip. From (10) using the
mean value theorem for Riemann integration {18] we can
write

(10)

/(.)WEZ(T)dT=Z(’TO)‘/(;WHy(T)dT (11)

where 7, € [0,W]. Dividing both sides of (11) by W and
recognizing the integral on the right-hand side as the total
current flowing on the surface, we can write

I
=Z(%)4; (12)
where Ez is the average value of the longitudinal compo-
nent of the electric field on the strip. Obviously, this value
can be thought of as the negative of the per-unit-length
average voltage drop along the strip, in which case (8) and
(12) lead to the relation

Z(7) =W[R(f)+ joLn(f)]. (13)

This is the desirable expression for the surface impedance
of the equivalent impedance surface to be used in place of
the lossy strip. In what follows, we shall denote this
surface impedance as Z,(f) where the subscript / suggests
its relation to the longitudinal current on the strip. A
transverse component of the current also exists, and a
transverse surface impedance Z, can be defined as dis-
cussed in the following section.

E

4
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C. Application of Boundary Condition

The electric and magnetic fields tangential to the surface
of the strips are related through the surface impedance
derived in the previous section as

E, )
2 =Z,(f).

¥y

(14)

For most practical purposes, the dominant part of the
conductor loss is due to the longitudinal component of the
current, for which the accurate longitudinal surface
impedance Z,(f) has been proposed. However, as the
frequency of interest becomes higher and /or the width of
the strip increases, the transverse component of the current
becomes more significant and needs to be accounted for.
This is being done using the standard surface impedance
for an infinite resistive plane as

Ey Z ) 1
—_——=7Z=(1+j)—
H = 1)08

z

(15)

where o is the conductivity of the strip and § the skin

depth at the frequency of interest. Even if the width of the

strip is finite, use of (15) is justified by the fact that the

strip is assumed to be infisite in the direction perpendicu-

lar to the flow of the transverse component of the current.
In view of (14) and (15), equation (6) takes the form

E= [ B0ny/xy)d(0) &+ Zo(H XAl s

(16)

where 2 a dyadic quantity that we call the dyadic surface
impedance, is given by

Z=Z9p+ 7,55 (17)
Recognizing the boundary condition for the magnetic field
as

AXH=1J

(18)

(16) becomes

fcg = (x,y/x",y")j(y )y’ - E-J’(y’)lkﬁk,m =0.
’ (19)

The method of moments is adopted here to solve for the
current distribution. The two-dimensional surface current
may be written as

i) =43+ 5(y)2 (20)
where j,(y’) and j,(y’) are unknown functions of y’.
Entire domain basis functions are chosen to approximate
the behavior of the current distribution. The longitudinal
current is represented by Chebyshev polynomials of the
first kind T}, and the transverse current is approximated by
Chebyshev polynomials of the second kind U,. These basis
functions are multiplied by their respective weighting func-
tions in order to satisfy the edge conditions



1968

()= pii:lfy,,v,,(%u'—yo))\ﬂ—(%w—yof)
@)

P-1

p(y)=X I,

q=0

Tq(%(y’—yo))

Si-(Zor-wr)

In the above expressions W is the width of the strip and
y, is the distance from the origin to the center of the strip.
Introducing these expressions for the basis functions, (19)
results in closed-form integrals that simplify to Bessel
functions of integer order.

The testing functions are chosen as Chebyshev polyno-
mials of the form

(22)

() =Y 5= ) 23)

2

v 0) =1, 50 (4)
This method is a variation of Galerkin’s procedure. The
integrals resulting from the weighted averages are ex-
pressed in terms of spherical Bessel functions. This tech-
nique results in a homogeneous system of simultaneous
algebraic equations which can be solved by setting the
determinant of the impedance matrix [2'] equal to zero.
Expressions for the elements of [Z'] are given in the
Appendix. The roots of the determinant correspond to the
propagation constants of the excited modes.

III. NUMERICAL RESULTS

Based on the theory presented in the previous section,
the complex propagation constant in high-frequency inter-
connects is evaluated as a function of various parameters
by using Muller’s algorithm with deflation. Each element
of this matrix involves a summation over the modes of the
inhomogeneously filled waveguide along the y direction.
The number of modes considered is enough to ensure
convergence.

As it has been discussed by many authors, isolated
microstrip interconnects can propagate a dominant mode
with zero cutoff frequency and higher order modes which
are in one-to-one correspondence with the modes of the
inhomogeneously filled waveguide surrounding them. All
these modes are hybrid in nature and exhibit strong depen-
dence on the electrical and geometrical characteristics of
the microstrip interconnects and the shielding structure.
From the parameters which affect the characteristics of the
propagating modes, the strip width W to substrate thick-
ness ratio (aspect ratio) and the operating frequency are
the most important ones. This paper gives an extensive
parametric study of the attenuation of the dominant mode
and the derived results are compared with available data
whenever possible.

In Fig. 4, conductor and dielectric losses calculated with
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Fig. 4. Conductor and dielectric losses of a single strip versus strip
width (¢ =10 mm, b= 20 mm, d = 1 mm, ¢, =10, § =333 X107 S/m,
tand =2x107%, f=1 GHz, ¢=0.01 mm). (a) Dielectric attenuation
as a function of w/d. (b) Ohmic attenuation as a function of w/d.

the present technique are shown as a function of the aspect
ratio. For thick strips, results derived in this paper are
compared with the finite element method (FEM) [6], the
spectral-domain method (SDM) {7}, [19] and an analytic
differentiation of Wheeler’s incremental inductance rule
[2].} All the existing full-wave analysis models evaluate
conductor losses by using a perturbation method where the
surface resistivity is given by the incremental inductance
rule and, as a result, cannot predict losses for conducting
strips with thickness of the order of a skin depth. The
effect of the conductor strip thickness on conductor losses
is explicitly shown on Fig. 5. On the figure, conductor
losses versus aspect ratio are plotted for the case of ¢ = 0.58,
which appear substantially different from the case of ¢ =2,
3, and 448 (electrically thick strips). Our results correctly
predict that as the thickness of the strip increases to values
large compared to the skin depth, the loss decreases signif-
icantly to the thick strip limit. This, of course, is due to the
fact that the current is forced to flow through a smaller
area.

!This analytic differentiation is implemented through the microwave
CAD software package LineCalc, available from EESOF.
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tric and conductor losses versus frequency. (b) Equivalent surface
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Fig. 7. Effect of ground plane resistivity on the ohmic attenuation
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Fig. 8. Effect of roughness on the ohmic attenuation constant as a

function of frequency (a=10 mm, »=-20 mm, W=d =280 pm,
T="70 pm, =15 pm, ¢, =10, 0 =4X10” S/m, t =6 pm).

The skin-effect problem may also be described as a
function of frequency. The attenuation constant « is plot-
ted in Fig. 6 for frequencies up to 20 GHz. Also shown are
the equivalent surface resistance of the strip (eq. (13)) and
the surface resistivity R, of the infinite thick plane repre-
senting the ground plane resistance. By using R, as the
surface resistivity of the ground plane, results have been
derived which show the effect of the lossy ground on
conductor losses (see Fig. 7). This effect is very important
and therefore losses due to ground plane cannot be ne-
glected.

The present method also allows to account accurately
for multiple metallizations and roughness of the surface of
the strip conductors. In Fig. 8, the effect of a periodic
variation of the surface roughness on conductor losses is
plotted as a function of frequency.

The technique presented in this paper has also been
applied to evaluate conductor and dielectric losses for the
even and odd excitation modes in the case of two edge-
coupled electrically thick strips. The derived results are
plotted in Fig. 9 as a function of the separation between
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~the two strips and are compared to results derived with the

spectral-domain method [7], [19]. The agreement is very
good. Similar results are presented in Fig. 10 for the case
of two-level interconnects as a function of frequency.

IV. SumMARrRY

~ An integral equation method has been applied to calcu-
'late the propagation constant in shielded multilayer struc-
tures involving an arbitrary number of non—perfectly con-
.ducting strips by using the combination of a static Green’s
function inside the strips and a hybrid Green’s function
formulation in the dielectrics. This method allows for the
evaluation of dielectric losses in the substrate layers and
.conductor losses in strips of arbitrary thickness. The skin-
reffect problem is addressed and results show an increase in
the attenuation constant for thin strips. As expected, finite
conductive ground plane and roughness of the strip in-
crease the attenuation constant substantially. Several inter-
.connect structures are analyzed, such as single lines and
-edge-coupled and broadside-coupled strips, and they com-
pare well with available data.
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APPENDIX
EXPRESSIONS FOR THE ELEMENTS OF THE IMPEDANCE
MATRIX &

(2) = piam S~ T | e (od) + )

.fq(4)fp(2) _ thq(pé) (Al)

) k. k 1 Dok
(g}gp) =$w”02 k2+k2{ k ((P,ﬁ) + k2 q)m) }

j(4)},;(1) (A2)
2 k k 1 k.
Far) = — G
( zy ) bwlu‘()§ ki’*’k?{ er((pm) k2 ((Pm) }
.%(3)_%(2) (A3)
k2 Z xr
(2)' = pjom T g | £ od) + 52 (e |
.jq(i*)jp(l) _ leq(;) (A4)
where
k €to (AS)
mar
S (A6)
ko =y(k,)~ Kk}~ k2 (A7)
and
(g7)'

cosk,, (x—h) tank, (x—h)+ ji,,,
cosk, (x'—h) 1- ju, tank,, x’
tank,, (x" —h)+ ju,,,  —1- ju,, tank, (x’' —h)
tank,,x’ + ju,; B 1- jn}, tank,,x’

(A8)
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cos erx ta'ner'x + Jﬂi of

cosk,,x" 1~ jo,, tank,, (x' —h)

a.f 23
(92:7) tank,, X' + ju,;

taner('x/ - h)+ jn1a5f -

1- jn%, tank,,x’
1- jnla’ftaner(x’ - h)
' (A9)

In (AS5), € is the complex permittivity of the substrate,
and i (=1, 2) represents the regions above and below the
point source, respectively.

- Further definitions necessary for the interpretation of
(A1)-(A4) are provided as

o w T w
VA =77rs1n(kyy0+n5)Jn ky—2— (A10)

./(2)=l( +1)cos| k,y,+ 2\ kK (A11)
n k n yyO n2 n+1 y2

y

wn form=n=0
2
IO = wr form=n+0 (A12)
4
0 form#+n
and
‘ i} |
PO WZ form=n (A13)
0 form+#n.

No general recurrence formulas were found for #©
" and #®. However, these integrals can be written in a
simple form as a weighted sum of spherical Bessel func-
tions.

In equations (A8) and (A9) 7’ and 'nf are given by

Lzt JZg;tank, h;
M Ze + jZ7tank, h,

*
we)

k

i

MNa™=

(A14)

Xxr

k
Wi o Z({i

i xr

Ny =

; Z{, + jZ§;tan k. h;

AlS5
+ jZ{;tank, h, (A15)

where

Who
Z§ = A

(A16)

0i

(A17)

e
wE;
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